

NZE Challenge

WP2 Task Force Meeting Wiesbaden 4th/5th Dec. 2013

Presentation Eva Bauer/GBV

WP2 Workshop Presentation Bauer/gbv

AGENDA Taskforce meeting WP 2, VIENNA

- A. Topic I: Methodology for Calculation Cost Optimality (New Construction and Refurbishment)
 + "Cost Effectiveness" of Project Deliverables
 - aa. Cost Optimality according to Building Directive ("Model Calculation")
 - ab. Energy Consumption + Energy Costs (Sample Calculation)
 - ac. Related Costs (Service, Maintenance) (Sample Calculation)
 - ad. Costs of Construction (+ Financing) (Sample Calculation)
 - ae. Cost Optimality/Effectiveness: Sample Calculation for Projects
- B. Topic II: Policy Packages to deliver nZEB

aa. Presentation a. Reports by Participants

Energy Consumption and Energy Costs (Sample)

- 1. Why Consumption + Costs:
 - Consumption is the direct parameter to measure energy effectiveness
 - Costs depend not only on consumption but also on prices/tariff systems
 - Trade Offs between energy/heating systems and energy costs (solar panels, heating pump, heating system)
- 2. Components of Heating Costs:

fixed costs (for system: investments, network, ...), variable costs (energy consumed), metering - service (?!)

components vary with heating system (e.g. investments and service for district heating is included in energy costs-bill, while investments , service for central heating system is not)

3. Heating – Hot water

even if we only want to explore consumption/costs of heating we need to deal with consumption/costs of hot water: in some systems one cannot split the costs but has to make estimations!

4. Solar Gains – Heating Pump: No Costs for energy (only investments etc) but energy consumption

Energy Consumption and Energy Costs (Sample)

Example of Calculation and Comparison of Energy Consumption and Costs

		Project 2	
	Project 1	Central Gas	Energy efficiency
	District Heating	Heating + Solar	
Energy Consumption Heating + Hot Water:	kWh/m2UFa		
Consumption kWh/m2a	84	72	
Solar gains	0	12	Still not perfect s
Total Consumption	84	84	costs for heating
Energy costs:	Euro/m2UFa		calculated
Energy bill Euro/m2a	8,40	5,76	
Service Heating system		0,12	For Comparison
Total Heating Costs	8,40	5,88	For Comparison
			Take energy cons
Solar effects	Euro/m2UFa		including solar g
Cost saving (energy consumption*price)		0,96	with average pri
additional rent (investment)		1,15	
Total Heating Costs + Investment Solar	8,40	7,03	84kWh * 0,09 €

iciency is the same

since investment g systems are not

for our purpose: nsumption gains and multiply rice:

= 7,56

	Project 1		Energy Consumption - Energy Costs
	District Heating +	Project 2	
	Ventilation with	Central Gas Heating	+ Service (Sample)
	Heat Exchange	+ Solar	
	Class I	Class IV	Class I: Passive + lowest energy,
Energy Consumption Heating + Hot Water:	kWh/m2UFa		annual heating demand/m2GF less
Consumption kWh/m2a	73	72	than 12kWh;
Solar gains		12	Class IV: low energy, annual heating
Total Consumption	73	84	demand/m2 GF 30 – 40 kWh
Energy costs:	Euro/m2UFa		
Energy bill Euro/m2a	7,30	5,76	
Service Heating system		0,12	Expected differences
Total Heating Costs	7,30	5,88	Expected difference:
Solar effects	Euro/m2UFa		30 kWh;
Cost saving (energy consumption*price)		0,96	Measured difference:
additional rent (investment)		1,15	11 kWh
Total Heating Costs + Investment Solar	7,30	7,03	
Energy consumption for Ventilation kWh	4	1	
Costs (electricity - double price) €	0,72	0,18	
Service €/m2UFa	0,12	0,03	
Total Heating + Ventilation + Service	8,14	7,24	Class I more expensive due to p
TOTAL WITH AVERAGE ENERGY PRICE	7,41	7,77	Class I less expensive

WP2 Workshop Presentation Bauer/gbv

COSTS OF CONSTRUCTION New Built Reflections on Comparability for single projects/sample

GENERAL

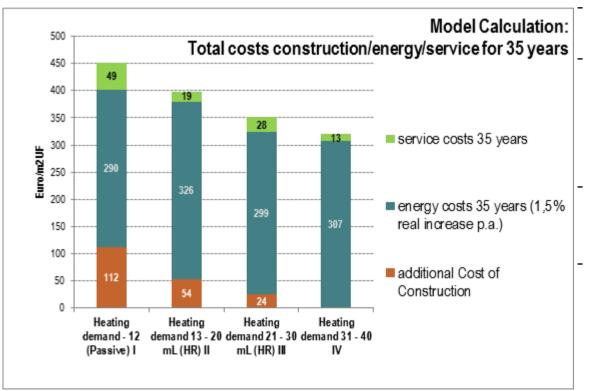
- Average Cost of Construction GBV-Sample: 1.820 € /m2 UF (Price level 2011) (note: no VAT due to VAT system in Austria)
- 37% of variance according to compactness (surface/volume); difference between very compact and less compact buildings (A/V 0,35 0,55) about 250 €/m2 UF
- Cost of garages
- Relation dwellings/elevator
- Average floor space/dwelling
- Local price differences
- Quality (energy and other)
- Building period

FOR OUR PURPOSE: total costs of construction vs. "energy only" real costs vs. standardized – methodology for standardization

COSTS OF CONSTRUCTION New Built GBV-Sample

- Decision: comparison of total costs of construction (less complicated for data collection)
- Price adaption according to building period (official index)
- Deduction of costs of garages
- Deduction of costs for solar panels
- Standardization according to average floor space of dwellings
- Elevators: deduction of costs in smaller buildings
- Elimination of regional price differences
- Result: Variation in costs was reduced, correlation between cost level and energy efficiency as well
- Building compactness: no standardization but controlle in analysis
- Difference between class I and class IV: 1.690 1.580 = 110 €/m2 = 7%

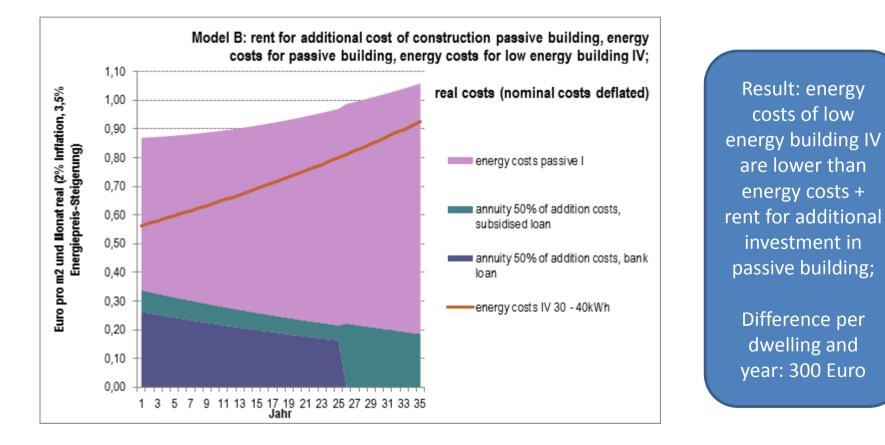
Total Lifecycle Costs New Built


 Calculation is different to that of the Building Directive which deals only with "building types" and not with "real" buildings

- Definition of Lifecycle costs Model A:

- * **Investments** for Energy Components CALCULATED as difference between costs of buildings of different energy classes (price level 2011)
- * energy costs for heating/hot water/ventilation for 35 years with average prices and a real increase of 1,5% p.a.
- * costs of service ventilation system for 35 years (no price increase)
- Definition of Lifecycle costs Model B:
 - * Investment costs calculated as a component of a cost rent for 35 years (puts more weight on investment since there are financing costs)
 - * energy and service as above

Result GBV-Sample Lifecycle Costs for 4 types of low energy buildings MODEL A



Explanations:

- Each "type" represents average data of a sample of 5 – 10 buildings; Calculation of energy costs as demonstrated before (measured consumption incl. solar gains, average energy price) for 35 years with 1,5% increase p.a.
- Service costs according to sample;35 years, no increase
- Difference per year and dwelling between I and IV: 280 Euro, between III and IV: 80 Euro

Result GBV-Sample Lifecycle Costs for 4 types of low energy buildings MODEL B

WP2 Workshop Presentation Bauer/gbv

COSTS OF CONSTRUCTION – COST EFFICIENCY REFURBISHMENT Reflections on Comparability for single projects/sample

More complicated than new construction:

- costs of energetc components difficult to define (separation between "costs anyway" and energetic component)
- Period of calculation hard to define: different periods of lifecycle of components and financial aspects (mortgages)
- Refurbishment not only requires energetic measures but also other repairs and upgrading (e.g. elevators)
- Energy Savings: Divergence between calculated and actual (measured) savings due to prebound and rebound effects (difference up to 50%)
- Findings Austria: Cost of a "simple" energetic refurbishment to obtain a MEASURED 35 kWh/m2GF reduction (= 45kWh/m2UF) by changing windows and insulating fassade amounts to 170 190 €/m2UF (in smaller buildings more than 200; no VAT!). Energy savings cannot compensate for these costs within 15 years (usual maturity of a loan for refurbishment).
 Compensation is only possible within 35 years AND costs of about 50% of the above mentioned (see following sheet)

COSTS OF CONSTRUCTION – COST EFFICIENCY REFURBISHMENT CALCULATIONS

	A. Energy savings by refurbishment								
	energy saving		Energy p	savings €/m2UFS					
	kWh/m2 UFS	2011	real 1,5% 15y	real 1,5% 30y	year	month			
calculated	90	0,08	0,09	0,10	9,3	0,78			
measured	45	0,08	0,09	0,10	4,7	0,39			
B. Payback Period and Loan Financing									
cost of refur	payback		loan financing						
€/m2 UFS	assumption	years	interest rate	maturity	installment/y	installment/m			
180	measured	39	0,03	15	15,1	1,26			
112	calculated	12	0,03	15	9,4	0,78			
56	measured	12	0,03	15	4,7	0,39			
180	measured	39	0,03	30	9,2	0,77			
92	measured	20	0,03	30	4,7	0,39			
105	measured	22	0,02	30	4,7	0,39			

Needs and Workplan

- A. Sharing Knowledge on Framework on nZEB-Strategies in member states (legislation, financing, subsidies) DELIVERABLE: 2.2 Basic Report (WP-Leader) 9-2012
- B. Sharing Knowledge on Costs, Practice and methodological approach
 common data base by demonstration sites (5 10 per partner; DELIVERABLE 2.3 4-2013)
 - exchange of methodologies, existing documentation/analysis WORKSHOP 2-2013 in Vienna

Sharing Knowledge on (operating) Costs, usability and cost-effectivness - 2-years- monitoring of 10 sites of WP-leader (plus voluntary others ...) DELIVERABLES 2.4 2.5 2.6 4-2014 (with interim reports 6 months previousely) questionnaire to be tested with other partners' "test sites" (2 out of 5)

C. Development on Guidelines/Recommendations /Lessons learned" "Core elements for national NZE 2020 road maps" DELIVERABLE 2.7 4-2014 WORKSHOP 2. Semester 2014: Agreement on "Recommandations + Guidelines"